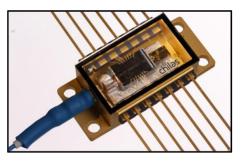


Product Specifications Sheet

Chilas CF3 nm ultra-narrow linewidth laser



Wavelength range: 1550 nm ± 5 nm

Fiber type: PM

Connector type: FC/APC

Package: standard 14-pin butterfly USA accession number: not yet available

Part Number: N/A

Serial Number laser: MAPOxxxxxxxx Serial Number electronics: xxxxxxx

Model Number: LAX

This component complies with the applicable portions of 21 CFR 1002.10 / 21 CRF 1002.11 / 21 CRF 1002.12 21 CRF 1002.13 / 21 CRF 1002.30a / 21 CRF 1002.30b 21 CRF 1040.10 / 21 CRF 1010.2 / 21 CRF 1010.3 Since this is a component, it does not comply with all of the requirements contained in 21 CFR 1040.10 and 21 CFR 1040.11 for complete laser products.

1. Introduction

Chilas develops and commercializes semiconductor external cavity lasers based on a state-of-the-art hybrid integration technology. The laser comprises an InP reflective semiconductor optical amplifier (RSOA) as gain medium and a Si_3N_4 waveguide circuit as an external cavity. The RSOA is butt-coupled to the external cavity. The laser is housed in a compact, 14-pin butterfly package, benabling compatibility with any standard 14-pin laser diode mount. The single-frequency laser contains an integrated thermoelectric cooler (TEC), thermistor, and a polarization-maintaining output fibre with an FC/APC connector.

2. Operation of principle

The main concept of the laser is shown in the Figure 1. On the left-hand side, there is a gain section which is high-reflective on the left-hand side and anti-reflective on the right-hand side where it is connected to a TriPleXTM Silicon Nitride external cavity waveguide chip. The external cavity has two coupled micro-ring resonators (MRRs) with slightly different FSR in the cavity to ensure stable single frequency operation by Vernier effect. On the SiN chip, there are 3 heaters are positioned, one to control the phase of the light in the cavity, and two to control the resonant wavelengths of the ring resonators Ring 1 and Ring 2, which in turn controls the output wavelength. The laser's frequency can be tuned over a large range by MRR tuning.

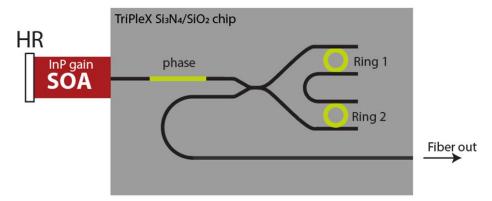


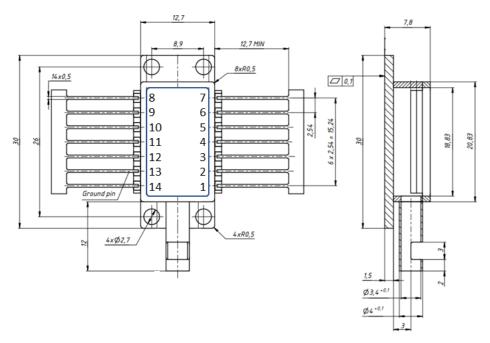
Figure 1: A schematic layout of the laser.

3. Optical isolation

Please note, there is no optical isolator added to the package. This laser type has an intrinsic optical isolation for the laser's wavelength (\pm 0.03 nm) of ~8-10 dB, while for wavelengths different from the laser's wavelength the intrinsic optical isolation is a lot higher.

4. Performance and specifications

	Parameter	Specified values
	Operating wavelength	1550 nm ± 5 nm
	Fiber-coupled output power @250 mA	≥ 13 dBm
Optical	Intrinsic linewidth	≤10 kHz
	Side-mode suppression ratio	≥ 50dB
	Polarization extinction ratio	≥ 20 dB
	Frequency drift Over -5∼+75°C case temperature range	≤ ±2.5 GHz


Electronic specifications				
	ΔT_{max}	71 K		
	Q_{max}	6.8 W		
Peltier element	I_{max}	1.8 A		
	U_{max}	6.3 V		
	R_t	0.06 K/W		
	B_{value}	3935 K		
NTC	Resistance @ 25°C	10 kΩ		
	I_{max}	250 mA		
Gain section	I_{typ}	150 mA		
	Heater V_{max}	12 V		
External cavity	Number of heaters	3		
	Voltage for 2.pi phase shift $V_{2\pi}$	11 V		
	Heater resistance R	~ 250 Ω		

Product Specifications Sheet

Mechanical specifications			
Parameters Gold box TEC Pigtail fiber	Parameters	Values	
	Gold box	14-pin, butterfly-style package.	
	TEC	$Q_{max} = 7.4 \text{ W}$ $I_{max} = 1.8 \text{ A}$ $U_{max} = 6.3 \text{ V}$ $ACR = 2.49 \text{ V}$	
	50 cm PM fiber with 900 μm loose blue tubing, FC/APC connector, slow-axis alignment.		

5. Mechanical structure and Pinout

Pin-out				
1	Peltier +	8	LD Anode	
2	Heater ring 1	9	LD Cathode	
3	Heater ring 2	10	Heater phase	
4	Not connected	11	Not connected	

Product Specifications Sheet

5	Not connected	12	Not connected
6	NTC-	13	Heater ground
7	NYC+	14	Peltier -

6. Typical results

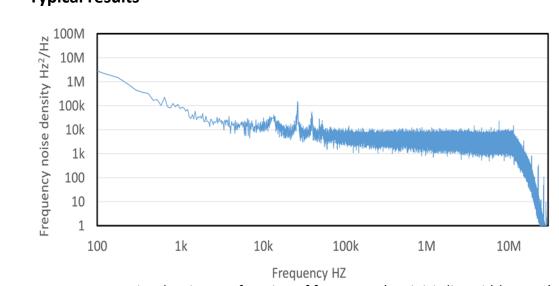


Figure 1: Frequency noise density as a function of frequency (Intrinisic linewidth 4 KHz).

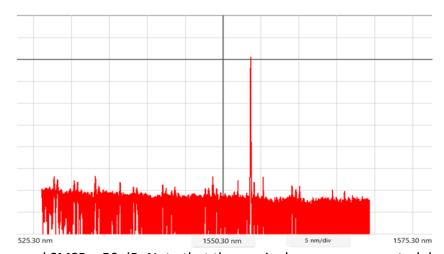


Figure 2: Measured SMSR > 50 dB. Note that the y-axis shows power spectral density, measured by an optical spectrum analyzer. It therefore does not show absolute optical power.

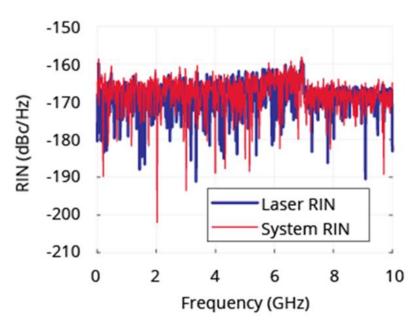


Figure 3: Typical RIN of the laser, compared to the RIN of the measurement system.

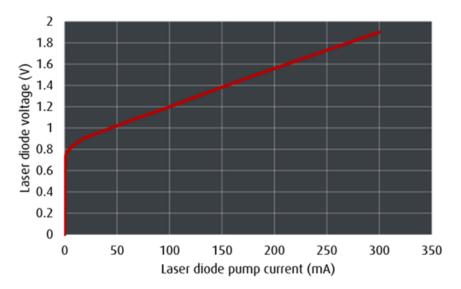


Figure 4: Typical V-I curve of the gain section.